Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Microbiol Spectr ; : e0214322, 2022 Oct 26.
Article in English | MEDLINE | ID: covidwho-2254671

ABSTRACT

The pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has posed an enormous burden on the global public health system and has had disastrous socioeconomic consequences. Currently, single sampling tests, 20-in-1 pooling tests, nucleic acid point-of-care tests (POCTs), and rapid antigen tests are implemented in different scenarios to detect SARS-CoV-2, but a comprehensive evaluation of them is scarce and remains to be explored. In this study, 3 SARS-CoV-2 inactivated cell culture supernatants were used to evaluate the analytical performance of these strategies. Additionally, 5 recombinant SARS-CoV-2 nucleocapsid (N) proteins were also used for rapid antigen tests. For the wild-type (WT), Delta, and Omicron strains, the lowest inactivated virus concentrations to achieve 100% detection rates of single sampling tests ranged between 1.28 × 102 to 1.02 × 103, 1.28 × 102 to 4.10 × 103, and 1.28 × 102 to 2.05 × 103 copies/mL. The 20-in-1 pooling tests ranged between 1.30 × 102 to 1.04 × 103, 5.19 × 102 to 2.07 × 103, and 2.59 × 102 to 1.04 × 103 copies/mL. The nucleic acid POCTs were all 1.42 × 103 copies/mL. The rapid antigen tests ranged between 2.84 × 105 to 7.14 × 106, 8.68 × 104 to 7.14 × 106, and 1.12 × 105 to 3.57 × 106 copies/mL. For the WT, Delta AY.2, Delta AY.1/AY.3, Omicron BA.1, and Omicron BA.2 recombinant N proteins, the lowest concentrations to achieve 100% detection rates of rapid antigen tests ranged between 3.47 to 142.86, 1.74 to 142.86, 3.47 to 142.86, 3.47 to 142.86, and 5.68-142.86 ng/mL, respectively. This study provided helpful insights into the scientific deployment of tests and recommended the full-scale consideration of the testing purpose, resource availability, cost performance, result rapidity, and accuracy to facilitate a profound pathway toward the long-term surveillance of coronavirus disease 2019 (COVID-19). IMPORTANCE In the study, we reported an evaluation of 4 detection strategies implemented in different scenarios for SARS-CoV-2 detection: single sampling tests, 20-in-1 pooling tests, nucleic acid point-of-care tests, and rapid antigen tests. 3 SARS-CoV-2-inactivated SARS-CoV-2 cell culture supernatants and 5 recombinant SARS-CoV-2 nucleocapsid proteins were used for evaluation. In this analysis, we found that for the WT, Delta, and Omicron supernatants, the lowest concentrations to achieve 100% detection rates of single sampling tests ranged between 1.28 × 102 to 1.02 × 103, 1.28 × 102 to 4.10 × 103, and 1.28 × 102 to 2.05 × 103 copies/mL. The 20-in-1 pooling tests ranged between 1.30 × 102 to 1.04 × 103, 5.19 × 102 to 2.07 × 103, and 2.59 × 102 to 1.04 × 103 copies/mL. The nucleic acid POCTs were all 1.42 × 103 copies/mL. The rapid antigen tests ranged between 2.84 × 105 to 7.14 × 106, 8.68 × 104 to 7.14 × 106, and 1.12 × 105 to 3.57 × 106 copies/mL. For the WT, Delta AY.2, Delta AY.1/AY.3, Omicron BA.1, and Omicron BA.2 recombinant N proteins, the lowest concentrations to achieve 100% detection rates of rapid antigen tests ranged between 3.47 to 142.86, 1.74 to 142.86, 3.47 to 142.86, 3.47 to 142.86, and 5.68 to 142.86 ng/mL, respectively.

2.
Frontiers in immunology ; 13, 2022.
Article in English | EuropePMC | ID: covidwho-1940007

ABSTRACT

Coronavirus disease 2019 (COVID-19) is a respiratory infectious disease that seriously threatens human life. The clinical manifestations of severe COVID-19 include acute respiratory distress syndrome and multiple organ failure. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causal agent of COVID-19, spreads through contaminated droplets. SARS-CoV-2 particles have been detected in the saliva of COVID-19 patients, implying that the virus can infect and damage the oral cavity. The oral manifestations of COVID-19 include xerostomia and gustatory dysfunction. Numerous studies showed that the four structural proteins of SARS-CoV-2 are its potential pathogenic factors, especially the S protein, which binds to human ACE2 receptors facilitating the entry of the virus into the host cells. Usually, upon entry into the host cell, a pathogen triggers the host’s immune response. However, a mount of multi-omics and immunological analyses revealed that COVID-19 is caused by immune dysregulation. A decrease in the number and phenotypes of immune cells, IFN-1 production and excessive release of certain cytokines have also been reported. In conclusion, this review summarizes the oral manifestations of COVID-19 and multi-omics analysis of SARS-CoV-2 infection.

3.
Natural Product Communications ; 16(10):1934578X211030818, 2021.
Article in English | Sage | ID: covidwho-1463102

ABSTRACT

Due to the significantly negative impact of the coronavirus (CoV) disease (COVID-19) pandemic on the health of the community and the economy, it remains urgent and necessary to develop a safe and effective treatment method for COVID-19. Huang-Lian-Shang-Qing-Wan (HLSQW) is a herbal formula of traditional Chinese medicine (TCM) that has been applied extensively for treating ?wind-heat-associated? symptoms in the upper parts of the body. The objective of the present in silico study was to investigate the potential effects of HLSQW in the context of severe acute respiratory syndrome (SARS)-CoV-2 infection. We analyzed the possible interactions between bioactive compounds within HLSQW on targets that may confer antiviral activity using network pharmacology and pharmacophore-based screening. HLSQW was found to potentially target a number of pathways and the expression of various genes to regulate cell physiology and, consequently, the anti-viral effects against SARS-CoV-2. Bioactive compounds contained within HLSQW may exert combined effects to reduce the production of proinflammatory factors, which may trigger the ?cytokine storm? in patients with severe COVID-19. Results from molecular modeling suggested that the bioactive HLSQW components puerarin, baicalin, and daidzin exhibit high binding affinity to the active site of 3-chymotrypsin-like cysteine protease (3CLpro) to form stable ligand-protein complexes, thereby suppressing SARS-CoV-2 replication. In addition, our results also demonstrated protective effects of the HLSQW extract against cell injury induced by the proinflammatory cytokines tumor necrosis factor-α, interleukin (IL)-1?, and IL-6, against reactive oxygen species production and nuclear factor-?B activity in normal human lung cells in vitro. To conclude, HLSQW is a potential TCM remedy that warrants further study with the aim of developing an effective treatment for COVID-19 in the future.

4.
J Pharm Biomed Anal ; 194: 113806, 2021 Feb 05.
Article in English | MEDLINE | ID: covidwho-1065380

ABSTRACT

Remdesivir is a prodrug of the nucleotide analogue and used for COVID-19 treatment. However, the bioanalysis of the active metabolites remdesivir nucleotide triphosphate (RTP) and its precursor remdesivir nucleotide monophosphate (RMP) is very challenging. Herein, we established a novel method to separate RTP and RMP on a BioBasic AX column and quantified them by high-performance liquid chromatography-tandem mass spectrometry in positive electrospray ionization mode. Stepwise, we optimized chromatographic retention on an anion exchange column, improved stability in matrix through the addition of 5,5'-dithiobis-(2nitrobenzoic acid) and PhosSTOP EASYpack, and increased recovery by dissociation of tight protein binding with 2 % formic acid aqueous solution. The method allowed lower limit of quantification of 20 nM for RMP and 10 nM for RTP. Method validation demonstrated acceptable accuracy (93.6%-103% for RMP, 94.5%-107% for RTP) and precision (RSD < 11.9 % for RMP, RSD < 11.4 % for RTP), suggesting that it was sensitive and robust for simultaneous quantification of RMP and RTP. The method was successfully applied to analyze RMP and RTP in mouse tissues. In general, the developed method is suitable to monitor RMP and RTP, and provides a useful approach for exploring more detailed effects of remdesivir in treating diseases.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Prodrugs/analysis , Prodrugs/metabolism , Tandem Mass Spectrometry/methods , Adenosine Monophosphate/analysis , Adenosine Monophosphate/metabolism , Adenosine Monophosphate/pharmacology , Alanine/analysis , Alanine/metabolism , Alanine/pharmacology , Animals , Antiviral Agents/analysis , Antiviral Agents/metabolism , Antiviral Agents/pharmacology , COVID-19/metabolism , Chromatography, Liquid/methods , Humans , Liver/chemistry , Liver/drug effects , Liver/metabolism , Male , Mice , Prodrugs/pharmacology , COVID-19 Drug Treatment
5.
Acta Pharmacol Sin ; 42(7): 1195-1200, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-844311

ABSTRACT

Remdesivir (RDV) exerts anti-severe acute respiratory coronavirus 2 activity following metabolic activation in the target tissues. However, the pharmacokinetics and tissue distributions of the parent drug and its active metabolites have been poorly characterized to date. Blood and tissue levels were evaluated in the current study. After intravenous administration of 20 mg/kg RDV in mice, the concentrations of the parent drug, nucleotide monophosphate (RMP) and triphosphate (RTP), as well as nucleoside (RN), in the blood, heart, liver, lung, kidney, testis, and small intestine were quantified. In blood, RDV was rapidly and completely metabolized and was barely detected at 0.5 h, similar to RTP, while its metabolites RMP and RN exhibited higher blood levels with increased residence times. The area under the concentration versus time curve up to the last measured point in time (AUC0-t) values of RMP and RN were 4558 and 136,572 h∙nM, respectively. The maximum plasma concentration (Cmax) values of RMP and RN were 2896 nM and 35,819 nM, respectively. Moreover, RDV presented an extensive distribution, and the lung, liver and kidney showed high levels of the parent drug and metabolites. The metabolic stabilities of RDV and RMP were also evaluated using lung, liver, and kidney microsomes. RDV showed higher clearances in the liver and kidney than in the lung, with intrinsic clearance (CLint) values of 1740, 1253, and 127 mL/(min∙g microsomal protein), respectively.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Nucleosides/metabolism , Nucleotides/metabolism , Polyphosphates/metabolism , Tissue Distribution/physiology , Adenosine Monophosphate/pharmacokinetics , Adenosine Monophosphate/pharmacology , Alanine/pharmacokinetics , Alanine/pharmacology , Animals , Antiviral Agents/pharmacokinetics , Antiviral Agents/pharmacology , COVID-19/metabolism , Kidney/metabolism , Liver/metabolism , Lung/metabolism , Male , Mice , SARS-CoV-2/drug effects , COVID-19 Drug Treatment
6.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.07.01.20144592

ABSTRACT

We present here genetic risk factors for survivability from infection by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) responsible for coronavirus disease 19 (COVID-19). At the time of writing it is too early to determine comprehensively and without doubt all risk factors, but there is an urgency due to the global pandemic crisis that merits this early analysis. We have nonetheless discovered 5 novel risk variants in 4 genes, discovered by examining 193 deaths from 1,412 confirmed infections in a group of 5,871 UK Biobank participants tested for the virus. We also examine the distribution of these genetic variants across broad ethnic groups and compare it to data from the UK Office of National Statistics for increased risk of death from SARS-CoV-2. We confidently identify the gene ERAP2 with a high-risk variant, as well as three other genes of potential interest. Although mostly rare, a common theme of genetic risk factors affecting survival might be the inability to launch or modulate an effective immune and stress response to infection from the SARS-CoV-2 virus.


Subject(s)
Coronavirus Infections , COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL